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Absorption and Extinction Corrections: Calculation Methods and Standard Tests 
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The results are presented of a series of standard calculations of absorption correction factors, covering 
a range of  recording conditions and absorption coefficients. Similar results are given for extinction 
correction factors. Errors affecting the analytical method for absorption correction are discussed, with 
suggestions for their removal. 

Cahen  & Ibers (1972) po in t  out  the need  for  stan- 
dard ized  ca lcula t ions  wi th  which  abso rp t ion  correc- 
t i on  p rograms  can be checked,  and  present  a small  
g roup  o f  such calculat ions.  However ,  thei r  examples  
specify the ray di rect ions  and  crystal  o r ien ta t ions  ex- 
plici t ly ra ther  t han  ca lcula t ing  t hem f rom the reflexion 
indices, and  thus  leave a m a j o r  section of  a comple te  
p r o g r a m  unchecked.  In  this paper ,  a more  ex tended 
series is given, s tar t ing f rom da ta  as it would  be 
presented  in a real ca lcula t ion,  wi th  commen t s  on 
some fur ther  aspects o f  abso rp t ion  calculat ions.  For  
the m a in  set (Table 1) a crystal  lacking any  mor-  

phologica l  symmet ry  is used (cf. Cahen  & Ibers,  1972) 
so tha t  errors  involv ing  ray reversal  or  crystal  ro ta-  
t ion  can be discovered.  It  is also useful to  check tha t  
equiva len t  reflexions give identical  results, and  Table  2 
con ta ins  a more  l imited set for  a crystal  o f  mmm sym- 
metry.  

The  sequence of  ca lcu la t ion  is significant  at  two  
points .  In the descr ip t ion  of  the crystal ,  the face planes  
are defined by thei r  Mil ler  indices and  the d i rec t ion  
cosines are ca lcula ted f rom these. Fo r  d i f f rac tometer  
recording,  the crystal  pos i t ion  is defined by the direc- 
t ion cosines o f  the vectors  a* ,b* ,c*  on l abo ra to ry -  

Table  1. Irregular crystal 

Unit cell: a-- 10.0, b=  11.0, c=  12.0/~; a=95.80, ,8=101.31, ),= 106.80°; 2=1.542 ,&. 
Crystal definition [Miller indices or direction cosines of the normals on axes a*, b' c, and perpendicular distance from origin] 

h k l OX O Y OZ D (arbitrary units) 
1 0 0 1 "0 0 0 1 "0 
0 1 1 0.3644 0"7150 0"5967 1"5 
0 - 2  1 -0"2057 -0"8829 0"4216 0"5 

- 3 0 1 - 0"9637 0"0270 0"2658 0"3 
1 1 - 4  0"1645 0"1676 -0"9720 1.3 

Transmission factors (x 104) 
/t(units as D) 1.0 0.15 0.01 1.0 1.0 1.0 1.0 1.0 

Method Equi-inc. Equi-inc. Equi-inc. Equi-inc. Normal Oscilla- Preces- Four- 
beam tion 15 ° sion 30 ° circle dif- 

inclination angle fractometer 
X X X Y Y Y X(preces- * 

Upper Lower sion 
Side Side axis) 

Rotation axis 

h k l 
0 1 1 2049 7529 9807 3300 3235 3055 2830 3349 
0 0 1 2202 7670 9820 3261 3261 2859 2804 3397 
0 0 - 1  2202 7670 9820 3261 3261 3431 2804 3397 
1 2 3 2349 7663 9818 3187 3066 3090 2651 3200 
1 2 - 3  1874 7409 9796 2735 2661 2678 2473 1680 
1 - 2  3 1851 7384 9794 3193 3137 2779 3013 2563 
1 - 2  - 3  2095 7598 9813 3020 2819 3355 2957 3358 

- 1  2 3 2128 7601 9813 3020 2782 2812 Not 3358 
- 1 2 - 3  1905 7389 9793 3192 3137 3304 observ- 2658 
- 1 - 2  3 1874 7409 9796 2773 2688 2601 able 1773 
- 1  - 2  - 3  2169 7647 9818 3163 3047 3051 3175 

* DiffractometerRecording: - 9 0 ~ Z ~ 9 0 ;  ~=0"0 if Z=0"0. Direction cosines (circles at zero) 

to X to Y to Z 
a* 0"1000 0"8543  -0.5100 
b* 0.7500 0.5239 0.4038 
c* 0"7219 -0"2025 -0"6616 
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Table 2. Regular crystal  

Unit cell: a=10.0, b=ll .0,  c=12"0/~; 0c=fl=y=90"0°; 2= 
1.542 A 
Crystal definition 
All forms of {111 } at a distance of 1.0 from the origin. These 
have direction cosines: +0.6298; +0-5726; +0-5249. Equi- 
inclination recording; Rotation axis X;/t = 1.0 

Reflexion Transmission factor (x 104) 
0+ 1 + 1 1823 
0 0+1 2338 
_+ 1 __ 2 _+ 3 2009 

fixed right-handed axes with (when all circles are at 
zero) Z parallel to the ~0 axis, leaving the crystal on 
the opposite side to the goniometer head, Y in the 
direction of the primary beam (leaving the crystal) and 
X orthogonal to them. The interaxial angles given by 
these cosines should correspond precisely to those of 
the specified unit cell, but the direction cosines take 
precedence. 

A further important aspect of many absorption cor- 
rection programs is the calculation of T, the mean 
path length, required for secondary-extinction correc- 
tion (Larson, 1970) 

1 (7'1 + T2) exp [ - / t ( T t  + T2)dz-] (D T= A-Oh 5 

with dr  indicating integration over the whole crystal 
and 7"1 and /'2 as the path lengths for a particular ray 
before and after diffraction, i.e. [Zachariasen, 1967, 
equation (42)] 

T =  - 1 dA(/z) (2) 
A(a) du 

A(/z) is the transmission factor for a particular re- 
flexion, and/z  is the linear absorption coefficient. For 
simple transmission through a plane plate or in any 
other situation where the path length is constant for 
all rays, it is also true that 

A(/0 =exp  ( -  T/z) , (3) 

i.e. T = I .  In [A(/0] • (4) 
/t 

However, this relationship does not hold generally, 
because of the different weighting of the various por- 
tions of the path in the crystal. Examples show that 
T is generally systematically smaller than values cal- 
culated from equation (4). 

The quantity T enters into the equations for extinc- 
tion correction as 6 (Larson, 1970) 

( e 2 )  z 23 P2 ~p 

c~ = _ _ ~  sin 20 " PI" 
(5) 

where V is the unit-cell volume, P2 and Pz are polariza- 
tion factors (P,  = 1 + cos z" 20 normally) and the other 
quantities have their usual significance. It is convenient 
to calculate ~ during the absorption-correction calcu- 
lation, and save it for each reflexion. Some complica- 
tions arise if crystal-monochromated radiation is be- 
ing used, when P,  takes on a more complex form. With 

as the Bragg angle of the monochromator  (assumed 
ideally mosaic) and fl as the dihedral angle ( > 90 °) be- 
tween the plane containing the incident and mono- 
chromated beams and the plane containing the mono- 
chromated and diffracted beams, then the components 
of the monochromated beam can be resolved along 
and across the diffracted beam to give 

/ , = 0 " 5  [(cos f l+sin fl cos 2 co) 
+ (sin f l+ cos fl cos z ~) cos 2" 20]. (6) 

For neutrons, P ,  is invariably 1.0. 
When data are recorded with a four-circle diffractom- 

eter fl is invariant: 0 and 90 ° for parallel and perpen- 
dicular geometry respectively. For photographic or 
two-circle recording fl changes from reflexion to re- 
flexion, and has to be calculated for each one. With a 
laboratory-fixed set of axes defined with Y along the 
monochromated X-ray beam, leaving the crystal, X 
along the camera or diffractometer rotation axis (zero 

h k l 
0 1 1 
0 0 1 
0 0 - 1  
1 2 3 
1 2 - 3  
1 - 2  3 
1 - 2  - 3  

- 1  2 3 
- 1  2 - 3  
- 1  - 2  3 
- 1  - 2  - 3  

Table 3. Ext inct ion  correction 

Equi-inclination 
Crystal 1, Rotation 

axis X 

p= 1.0 
T 

1-235 
1.219 
1.219 
1.089 
1"308 
1.311 
1 "253 
1-225 
1"261 
1.308 
1-229 

a=O.15 

1-834 
1.719 
1.719 
1.711 
1 "937 
1.957 
1-780 
1-755 
1 "947 
1"937 
1-739 

g=0.01 

1.948 
1.810 
1.810 
1-835 
2.056 
2"078 
1.885 
1.887 
2"082 
2.056 
1-838 

Diffractometer as 
Diffractom- Table 1 

eter as No mono- Mono- 
Table 1 chromator chromator 

a = 35 °/~ = 0 ° 
a=  1-0 10%~/~ 1 0 6 d ; / f  ' 

0'987 1781 1777 
0"964 2916 2913 
0"964 2916 2913 
0"999 577 566 
1"387 749 740 
1"102 749 740 
0"981 720 711 
0"981 720 711 
1 "069 749 740 
1"301 749 740 
1"017 577 566 
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inclination) and Z orthogonal, the geometry can be 
specified by the angle y(0 < ?, < 180) between the X axis 
and the normal (N) to the monochromated beam and 
the beam incident on the monochromator. N lies in 
the XZ plane and is taken on the same side of the 
XY plane as Z. The angle calculations (Alcock, 1969) 
for each reflexion produce the direction cosines on the 
crystal-fixed axes of the incident (I) and reflected (O) 
rays; the direction cosines (R) of the crystal rotation 
axis are also known. With Weissenberg geometry, in- 
clination of the rotation axis does not move it out of 
the XY plane and so the direction cosines (ZC) of the 
laboratory Z axis on the crystal-fixed axes can be 
found by 

Z C = R A I .  

This is not correct for precession geometry, but it is 
not likely that the error introduced by using it will be 
significant for photographic data. Then for the lab- 
oratory X axis 

XC = ZC A I 

and the direction cosines (N) for the normal to the 
plane containing the incident and diffracted beam are 
given by 

N = I A O .  

The required angle fl is given by the difference between 
A 

), and XCN. Values to illustrate the calculation of these 
extinction corrections are given in Table 3. 

The calculations described here have been carried 
out with the program ABSCOR (Alcock, 1970) which 
employs the analytical method for absorption correc- 
tion (de Meulenaer & Tompa, 1965), with identical 
results on three different computers, ATLAS, ICL 
1906A (both with 48-bit floating-point word length) 
and IBM 360/75 (using REAL*8, i.e. 64-bit floating- 
point word length - see below). The program has also 
been checked on the data of Cahen & Ibers, 1972, giv- 
ing results identical to their 'correct answers'. They 
report erroneous results with the analytical method in 
the unacceptably high proportion of 1% of the cal- 
culations. However, careful consideration of all such 
errors has led to a reduction of the error rate to an 
undetectably small proportion with ABSCOR, cer- 
tainly less than 1 in 10000 reflexions. 

The sources of error are threefold: calculation of 
volume, of transmission and of dA/du. For the trans- 
mission factor, errors arise from the evaluation of 
h(x) = [ 1 - e x p ( - x ) ] / x  and related functions (de Meu- 
lenaer & Tompa, 1965) when x is small, and can be 
avoided by using a series expansion if x is smaller than 
some limit e Alcock, 1970). Errors in the transmission 
factor also affect dA/dp (which is evaluated by simple 
numerical differentiation) particularly if /z is small. 
With the limited accuracy of the 32-bit floating-point 
word length of the IBM 360, e must be taken as the 
rather large value of 1 .10  -2 to avoid the calculation 
of some negative transmission factors; even then some 

values of dA/dlz are wrong and some transmission 
factors are inaccurate. The use of 48 or 64-bit real 
word length removes all these problems. 

In the volume calculation? errors arise in two ways, 
failure to find all the auxiliary points (de Meulenaer 
& Tompa, 1965), and failure to calculate the volume 
of individual Howells polyhedra correctly. The first 
arises because various test criteria for an auxiliary 
point to be real are of the form 

0<c~<l  

and the test function ~ may be systematically equal 
to 0 or 1 and therefore may fall slightly outside this 
range by computational inaccuracy. Tolerances of 
1. 10 -6 proved satisfactory for 48-bit floating-point 
word length. Failures at this point in the program are 
most likely with high-symmetry crystals in symmetrical 
orientations. 

A more serious and general cause of failure lies in 
the calculation of the volume of each Howells poly- 
hedron, which is done by subdividing each polyhedron 
into irregular tetrahedra (de Meulenaer & Tompa, 
1965; Alcock, 1970); these tetrahedra are found by 
starting from one tetrahedron formed from an ar- 
bitrarily selected set of four points, and adding other 
tetrahedra on each face of the original and of the added 
tetrahedra, until the whole polyhedron is included. 
Errors arise if the original tetrahedron has a very small 
volume. This will be negligible in itself, but the volume 
of a tetrahedron formed by a further point and one 
face of the original tetrahedron can be large, leading 
to large (perhaps 50 %) errors in the total crystal vol- 
ume. To accept any tetrahedron, however small, as 
genuine is not satisfactory, because the volume defined 
be four coplanar points should be zero, but can be in- 
creased by rounding errors. 

The resolution of this problem involves an addition 
to the original program of de Meulenaer and Tompa. 
After the selection of those auxiliary points which are 
vertices of the particular Howells polyhedron being 
considered, their coordinates are checked to remove 
any points which are essentially identical to others in 
the list (whether true or accidental coincidences). This 
also has the advantage of speeding up the volume cal- 
culations. Two points are considered identical if none 
of their coordinates differ by more than 0, which is 
chosen partly to cover the spread given to the coor- 
dinates of identical points by rounding errors and 
partly for reasons given below. For 48-bit precision 
0=  1 . 10 -s was satisfactory. Then, the volume (~) of 
the smallest tetrahedron which is accepted as genuine 
is set to be rather larger than that for four points 
which just fail to coincide. This volume must also be 
larger than the volume of a tetrahedron formed by four 
coplanar points which have random computational 
errors in their coordinates. It may be necessary to in- 

t All czystals are normalized so that their largest coordinate 
is set to 1"0. 
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crease J so that the minimum volume which is likely 
to be calculated exceeds this maximum erroneous vol- 
ume. A value of ~ = 1 . 10 -9 was satisfactory for 48-bit 
word length. 
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The Effect of Surface Damage on the Intensity of X-rays Diffracted by 
Ground Spherical Single Crystals 
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Integrated intensities from ground spherical single crystals of silicon, zinc sulphide, and calcium fluoride 
before and after etching are compared. The surface damage of the unetched crystals, apparent on scanning 
electron micrographs, is shown to give rise to a very appreciable enhancement of the X-ray Bragg inten- 
sities. A possible explanation for physically unrealistic phenomenological extinction parameters reported 
in the literature is suggested. 

ln~oducfion 

The crystalline character of abraded surfaces of flat 
crystals treated in various ways and the effect of such 
treatment on the diffracted X-ray intensity has been in- 
vestigated by Gay & Hirsch (1951). 

A recent multi-wavelength investigation of extinc- 
tion (Prager & Barnea, 1974) has suggested that ground 
spherical crystals may consist of a rather perfect 'core' 
surrounded by a less perfect 'skin'. With such a pos- 
sibility clearly raising important issues for the ap- 
plicability of Zachariasen's extinction theory, in which 
the central assumption is one of imperfectional homo- 
geneity of the specimen, we now report on experiments 
designed to test this speculation. 

Experimental procedures and results 

Scanning electron micrographs of a single crystal of 
semiconductor-quality silicon ground to spherical 
shape with a Bond-type grinder (Bond, 1951), whose 
grinding surface was impregnated with 800-mesh dia- 
mond dust, are shown in Figs. 1 and 2. Figs. 3 and 4 
show micrographs of a similarly prepared sphere of 
silicon after brief etching in a solution consisting of 

* Present address: Physics Department,  University of  New 
England, Armidale, N.S.W., Australia. 

t Present address: Department of Structural Chemistry. 
The Weizmann Institute of Science, Rehovot, Israel. 

16 parts of 48 % hydrofluoric acid, 44 parts of glacial 
acetic acid, and 100 parts of fuming nitric acid. To 
facilitate the microscopy, a thin layer of gold was 
evaporated onto both crystals. The ground crystals 
were rinsed vigorously in acetone before the gold was 
deposited. The micrographs of the unetched crystals 
reveal considerable surface roughness, fine cracks, and 
possibly some detached particles. The etched crystals 
are comparatively smooth; some faceting of the etched 
surface is apparent. 

Integrated intensities of a number of Bragg reflex- 
ions of silicon were measured on a manual Picker 
four-circle diffractometei using nickel-filtered copper 
Ke radiation detected by a scintillation counter. The 
measurements were carried out in the following se- 
quence. A silicon sphere was ground and then rinsed 
in acetone; integrated intensities of a number of re- 
flexions were then measured. The crystal was then de- 
tached from the glass fibre on which it was mounted, 
briefly etched, and remounted. The measurements were 
repeated with the same settings of the X-ray generator 
and detector electronics. 

The integrated intensities of equivalent reflexions 
differed by no more than 4%. The peak heights of 
the two measured equivalent reflexions were compared 
with those of other equivalent reflexions and no dis- 
crepancies outside the above limits were observed. 

In order to exclude the possibility that the very ap- 
preciable decrease in the intensities observed with the 
etched crystal was due to a peculiar intensity distribu- 
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